
Table of Contents
 How to Manage a Set of Services..1

 Introduction...1
 Creating a Service Set...1
 Activating a Service Set..1
 Inheriting between Service Sets..2
 Sharing Service Sets between Threads...2
 Review Status...3

i

How to Manage a Set of Services
Complete:

Introduction

Multiple 'sets of services' can be used within an application, although only one set can be active per thread at
an instance in time.

Creating a Service Set

Only the application 'main' routine and an EventProcessor are allowed to create new 'service sets'. There are
several interfaces to create a new service set: via a parameter set or by inserting an already created service
instance.

A new service set can be created by passing an std::vector<edm::ParameterSet> to
edm::ServiceRegistry::createSet(). The method returns an edm::ServiceToken which is
later used to make a service set active. The edm::ParameterSet used to describe a Service expects a
Parameter named '@service_type' of type 'string' to hold the name of the Service type that is to be created.
The other Parameters used to configure the service should also be set in the edm::ParameterSet.
[NOTE: in CMSSW_0_1_0 the name was 'service_type' instead of '@service_type']

 std::vector<edm::ParameterSet> params;
 edm::ParameterSet pSet;
 pSet.addParameter("@service_type",std::string("Tracer"));
 pSet.addParameter("indentation", std::string("++"));
 params.push_back(pSet);

 edm::ServiceToken token = edm::ServiceRegistry::createSet(params);

One can also create a service set by first creating an instance of the service and then passing it to
edm::ServiceRegistry::createContaining(). The method returns an edm::ServiceToken
which is later used to make a service set active. One can either pass an std::auto_ptr<T> or a
boost::shared_ptr< edm::serviceregistry::ServiceWrapper<T> > to the
createContaining() method, where T it the actual C++ type of the service. The choice depends on if
you do not need to change the service later (then use std::auto_ptr) or if you must allow for changes
(then use boost::shared_ptr). [NOTE: this option was added after CMSSW_0_1_0]

 std::auto_ptr<Foo> foo(new Foo());

 edm::ServiceToken token = edm::ServiceRegistry::createContaining(foo);

Activating a Service Set

A service set is made active (that is, the services it provides can be accessed via Service<>) through the
use of edm::ServiceRegistry::Operate. The Operate class is meant to live on the stack and is
passed an edm::ServiceToken in its constructor. As part of the construction, Operate will make all the
services described by edm::ServiceToken active. When the Operate goes out of scope, its destructor
will replace the present 'service set' with the set that was 'active' before the Operate was constructed.

 edm::ServiceRegistry::Operate(token);
 ...

 How to Manage a Set of Services 1

https://twiki.cern.ch/twiki/bin/view/CMS/EventProcessor

The use of edm::ServiceRegistry::Operate allows services sets to be nested where what services
are available at an instant in time is dependent on how deep you are in the call stack.

Inheriting between Service Sets

It is possible to share all or some of the services between two service sets. This is done by passing a
previously made edm::ServiceToken to edm::ServiceRegistry::createSet() along with the
std::vector<edm::ParameterSet> used to configure the additional services and a
edm::serviceregistry::ServiceToken enumeration value which states how overlaps between the
edm::ServiceToken and the std::vector<edm::ParameterSet> should be handled. The results
of the call to createSet() will be an edm::ServiceToken that can contain Services 'inherited' from
the other edm::ServiceToken.

 std::vector<edm::ParameterSet> params;
 edm::ParameterSet pSet;
 pSet.addParameter("@service_type",std::string("Tracer"));
 params.push_back(pSet);

 edm::ServiceToken childToken = edm::ServiceRegistry::createSet(parentToken,kOverlapIsError,params);

edm::CMS.EventProcessor can also inherit services by calling the forms of its constructor that take an
edm::ServiceToken and edm::serviceregistry::ServiceLegacy.

Allowed values of edm::serviceregistry::ServiceLegacy are as follows

name description
kOverlapIsError If an overlap occurs, then an exception will be thrown
kTokenOverrides If an overlap occurs, the service described in the edm::ServiceToken is used
kConfigurationOverrides If an overlap occurs, the service not in the edm::ServiceToken is used

Sharing Service Sets between Threads

Each thread in the application will have its own edm::ServiceRegistry. However, a service set can be
shared between threads. This is accomplished by passing an edm::ServiceToken between two threads
(this operation is guaranteed to be safe).

If you want a child thread to inherit the presently active service set from the parent thread, then

in the parent thread call edm::ServiceRegistry::instance().presentToken() to get
an edm::ServiceToken for the presently active service set

•

pass that edm::ServiceToken to the child thread•
in the child thread construct an edm::ServiceRegistry::Operate on the stack•

 struct PassServices {
 PassServices(edm::ServiceToken iT): token_(iT) {}
 void operator()(){
 //make the services available
 edm::ServiceRegistry::Operate(token_);
 ...
 }
 ...
 edm::ServiceToken token_;
 };

 ...
 //pass the present services to the new thread

Activating a Service Set 2

https://twiki.cern.ch/twiki/bin/genpdf/CMSPublic/SWGuideEDMServiceDocManaging?skin=pattern;cover=print;sortcol=0;table=1;up=0#sorted_table
https://twiki.cern.ch/twiki/bin/genpdf/CMSPublic/SWGuideEDMServiceDocManaging?skin=pattern;cover=print;sortcol=1;table=1;up=0#sorted_table

 PassServices passRun(ServiceRegistry::instance().presentToken());
 boost::thread newThread(passRun);

NOTE: The ServiceRegistry system itself is thread safe, but it is up to the individual service developers to
guarantee that their service is safe to operate in multiple threads.

Review Status

Reviewer/Editor and Date (copy from screen) Comments
ChrisDJones - 13 Sep 2005 page author
ChrisDJones - 05 Oct 2005 page content last edited
JennyWilliams - 07 Feb 2007 editing to include in SWGuide

Responsible: ChrisDJones
Last reviewed by: Reviewer

This topic: CMSPublic > SWGuideEDMServiceDocManaging
Topic revision: r6 - 06-Feb-2007 - 23:56:16 - JennyWilliams

Copyright &© by the contributing authors. All material on this collaboration platform is the
property of the contributing authors.
Ideas, requests, problems regarding TWiki? Send feedback

Sharing Service Sets between Threads 3

https://twiki.cern.ch/twiki/bin/genpdf/CMSPublic/SWGuideEDMServiceDocManaging?skin=pattern;cover=print;sortcol=0;table=2;up=0#sorted_table
https://twiki.cern.ch/twiki/bin/genpdf/CMSPublic/SWGuideEDMServiceDocManaging?skin=pattern;cover=print;sortcol=1;table=2;up=0#sorted_table
https://twiki.cern.ch/twiki/bin/view/Main/ChrisDJones
https://twiki.cern.ch/twiki/bin/view/Main/ChrisDJones
https://twiki.cern.ch/twiki/bin/view/Main/JennyWilliams
https://twiki.cern.ch/twiki/bin/view/Main/ChrisDJones
https://twiki.cern.ch/twiki/bin/view/Main/JennyWilliams
http://twiki.org/
mailto:twtool@support@cern.ch?subject=TWiki%20Feeedback%20on%20CMSPublic.SWGuideEDMServiceDocManaging

	Table of Contents
	 How to Manage a Set of Services
	 Introduction
	 Creating a Service Set
	 Activating a Service Set
	 Inheriting between Service Sets
	 Sharing Service Sets between Threads
	 Review Status

